summaryrefslogtreecommitdiff
path: root/ast2json/renpy/atl.py
blob: 01c76d303f96eb00774508df1a955add4fdb5247 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
# Copyright 2004-2010 PyTom <pytom@bishoujo.us>
#
# Permission is hereby granted, free of charge, to any person
# obtaining a copy of this software and associated documentation files
# (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge,
# publish, distribute, sublicense, and/or sell copies of the Software,
# and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import renpy
import random

def compiling(loc):
    file, number = loc

    renpy.game.exception_info = "Compiling ATL code at %s:%d" % (file, number)

def executing(loc):
    file, number = loc
    
    renpy.game.exception_info = "Executing ATL code at %s:%d" % (file, number)


# A map from the name of a time warp function to the function itself.
warpers = { }

def atl_warper(f):
    name = f.__name__
    warpers[name] = f
    return f
    
# The pause warper is used internally when no other warper is
# specified.
@atl_warper
def pause(t):
    if t < 1.0:
        return 0.0
    else:
        return 1.0

position = object()
    
# A dictionary giving property names and the corresponding default
# values.
PROPERTIES = {
        "pos" : (position, position),
        "xpos" : position,
        "ypos" : position,
        "anchor" : (position, position),
        "xanchor" : position,
        "yanchor" : position,
        "xaround" : position,
        "yaround" : position,
        "xanchoraround" : float,
        "yanchoraround" : float,
        "align" : (float, float),
        "xalign" : float,
        "yalign" : float,
        "rotate" : float,
        "xzoom" : float,
        "yzoom" : float,
        "zoom" : float,
        "alpha" : float,
        "around" : (position, position),
        "alignaround" : (float, float),
        "angle" : float,
        "radius" : float,
        "crop" : (float, float, float, float),
        "size" : (int, int),
        "corner1" : (float, float),
        "corner2" : (float, float),
        "subpixel" : bool,
        "delay" : float,
        }

def correct_type(v, b, ty):
    """
    Corrects the type of v to match ty. b is used to inform the match.
    """

    if ty is position:
        return type(b)(v)
    else:
        return ty(v)


def interpolate(t, a, b, type):
    """
    Linearly interpolate the arguments. 
    """

    if t >= 1.0:
        return b
    
    # Recurse into tuples.
    if isinstance(b, tuple):
        return tuple(interpolate(t, i, j, ty) for i, j, ty in zip(a, b, type))

    # Deal with booleans, nones, etc.
    elif b is None or isinstance(b, bool):
        if t >= 1.0:
            return b
        else:
            return a

    # Interpolate everything else.
    else:
        if a is None:
            a = 0
            
        return correct_type(a + t * (b - a), b, type)

# Interpolate the value of a spline. This code is based on Aenakume's code,
# from 00splines.rpy.
def interpolate_spline(t, spline):

    if isinstance(spline[-1], tuple):
        return tuple(interpolate_spline(t, i) for i in zip(*spline))
        
    if len(spline) == 2:
        t_p = 1.0 - t        

        rv = t_p * spline[0] + t * spline[-1]

    elif len(spline) == 3:
        t_pp = (1.0 - t)**2
        t_p = 2 * t * (1.0 - t)
        t2 = t**2
        
        rv = t_pp * spline[0] + t_p * spline[1] + t2 * spline[2]

    elif len(spline) == 4:

        t_ppp = (1.0 - t)**3
        t_pp = 3 * t * (1.0 - t)**2
        t_p = 3 * t**2 * (1.0 - t)
        t3 = t**3
        
        rv = t_ppp * spline[0] + t_pp * spline[1] + t_p * spline[2] + t3 * spline[3]

    else:
        raise Exception("ATL can't interpolate splines of length %d." % len(spline))

    return correct_type(rv, spline[-1], position)
    

# This is the context used when compiling an ATL statement. It stores the
# scopes that are used to evaluate the various expressions in the statement,
# and has a method to do the evaluation and return a result.
class Context(object):
    def __init__(self, context):
        self.context = context

    def eval(self, expr):
        return eval(expr, renpy.store.__dict__, self.context)
    
# This is intended to be subclassed by ATLTransform. It takes care of
# managing ATL execution, which allows ATLTransform itself to not care
# much about the contents of this file.
class ATLTransformBase(renpy.object.Object):

    # Compatibility with older saves.
    parameters = renpy.ast.ParameterInfo([ ], [ ], None, None) 
    
    def __init__(self, atl, context, parameters):

        super(ATLTransformBase, self).__init__()
        
        if parameters is None:
            parameters = ATLTransformBase.parameters

        # The parameters that we take.
        self.parameters = parameters
        
        # The raw code that makes up this ATL statement.
        self.atl = atl

        # The context in which execution occurs.
        self.context = Context(context)
        
        # The code after it has been compiled into a block.
        self.block = None

        # The properties of the block, if it contains only an
        # Interpolation.
        self.properties = None

        # The state of the statement we are executing. As this can be
        # shared between more than one object (in the case of a hide),
        # the data must not be altered.
        self.atl_state = None

        # Are we done?
        self.done = False

        # The transform event we are going to process.
        self.transform_event = None

        # The transform event we last processed.
        self.last_transform_event = None

        # The child transform event we last processed.
        self.last_child_transform_event = None

    def take_execution_state(self, t):
        """
        Updates self to begin executing from the same point as t. This
        requires that t.atl is self.atl.
        """

        self.done = t.done
        self.block = t.block
        self.atl_state = t.atl_state
        self.transform_event = t.transform_event
        self.last_transform_event = t.last_transform_event
        self.last_child_transform_event = t.last_child_transform_event

    def __call__(self, *args, **kwargs):

        context = self.context.context.copy()

        for k, v in self.parameters.parameters:
            if v is not None:
                context[k] = renpy.python.py_eval(v)

        positional = list(self.parameters.positional)
        args = list(args)
        
        child = self.child

        if not positional and args:
            child = args.pop(0)
        
        # Handle positional arguments.
        while positional and args:
            name = positional.pop(0)
            value = args.pop(0)

            if name in kwargs:
                raise Exception('Parameter %r is used as both a positional and keyword argument to a transition.' % name)

            context[name] = value

        if args:
            raise Exception("Too many arguments passed to ATL transform.")

        # Handle keyword arguments.
        for k, v in kwargs.items():

            if k in positional:
                positional.remove(k)
                context[k] = v
            elif k in context:
                context[k] = v
            elif k == 'child':
                child = v
            else:
                raise Exception('Parameter %r is not known by ATL Transform.' % k)

        # Create a new ATL Transform.
        parameters = renpy.ast.ParameterInfo({}, positional, None, None)

        rv = renpy.display.motion.ATLTransform(
            atl=self.atl,
            child=child,
            style=self.style_arg,
            context=context,
            parameters=parameters)

        rv.take_state(self)

        return rv

    
    def compile(self):
        """
        Compiles the ATL code into a block. As necessary, updates the
        properties.
        """

        if self.parameters.positional and self.parameters.positional[0][1] is None:
            raise Exception("Cannot compile ATL Transform, as it's missing positional parameter %s." % self.parameters.positional[0])
        
        old_exception_info = renpy.game.exception_info
        
        self.block = self.atl.compile(self.context)

        if len(self.block.statements) == 1 \
                and isinstance(self.block.statements[0], Interpolation):

            interp = self.block.statements[0]

            if interp.duration == 0 and interp.properties:
                self.properties = interp.properties[:]

        renpy.game.exception_info = old_exception_info

        
    def execute(self, trans, st, at):

        if self.done:
            return None

        if not self.block:
            self.compile()

        # Propagate transform_events from children.
        if self.child:
            if self.child.transform_event != self.last_child_transform_event:
                self.last_child_transform_event = self.child.transform_event
                self.transform_event = self.child.transform_event

        # Hide request.
        if trans.hide_request:
            self.transform_event = "hide"
            
        # Notice transform events.
        if self.transform_event != self.last_transform_event:
            event = self.transform_event
            self.last_transform_event = self.transform_event
        else:
            event = None
            
        old_exception_info = renpy.game.exception_info

        if self.atl.animation:
            timebase = at
        else:
            timebase = st
        
        action, arg, pause = self.block.execute(trans, timebase, self.atl_state, event)

        renpy.game.exception_info = old_exception_info

        # print "Executing", self, self.state, self.xpos, self.ypos
        
        if action == "continue":
            self.atl_state = arg
        else:
            self.done = True

        return pause

    
    def predict(self, callback):
        self.atl.predict(self.context, callback)

        
    def visit(self):
        if not self.block:
            self.compile()

        return self.children + self.block.visit()
        
    
# The base class for raw ATL statements.
class RawStatement(renpy.object.Object):

    def __init__(self, loc):
        super(RawStatement, self).__init__()
        self.loc = loc
        
    # Compiles this RawStatement into a Statement, by using ctx to
    # evaluate expressions as necessary.
    def compile(self, ctx):
        raise Exception("Compile not implemented.")

    # Predicts the images used by this statement.
    def predict(self, ctx, callback):
        return
    

# The base class for compiled ATL Statements.
class Statement(renpy.object.Object):

    def __init__(self, loc):
        super(Statement, self).__init__()
        self.loc = loc

    # trans is the transform we're working on.
    # st is the time since this statement started executing.
    # state is the state stored by this statement, or None if
    # we've just started executing this statement.
    # event is an event we're triggering.
    #
    # "continue", state, pause - Causes this statement to execute
    # again, with the given state passed in the second time around.
    #
    # 
    # "next", timeleft, pause - Causes the next statement to execute,
    # with timeleft being the amount of time left after this statement
    # finished.
    #
    # "event", (name, timeleft), pause - Causes an event to be reported,
    # and control to head up to the event handler.
    #
    # "repeat", (count, timeleft), pause - Causes the repeat behavior
    # to occur.
    #
    # As the Repeat statement can only appear in a block, only Block
    # needs to deal with the repeat behavior.
    #
    # Pause is the amount of time until execute should be called again,
    # or None if there's no need to call execute ever again.
    def execute(self, trans, st, state, event):
        raise Exception("Not implemented.")

    # Return a list of displayable children.
    def visit(self):
        return [ ]

# This represents a Raw ATL block.
class RawBlock(RawStatement):

    # Should we use the animation timebase or the showing timebase?
    animation = False

    def __init__(self, loc, statements, animation):

        super(RawBlock, self).__init__(loc)
        
        # A list of RawStatements in this block.
        self.statements = statements
        
        self.animation = animation
        
    def compile(self, ctx):
        compiling(self.loc)

        statements = [ i.compile(ctx) for i in self.statements ]

        return Block(self.loc, statements)

    def predict(self, ctx, callback):
        for i in self.statements:
            i.predict(ctx, callback)
    
    
# A compiled ATL block. 
class Block(Statement):
    def __init__(self, loc, statements):

        super(Block, self).__init__(loc)
        
        # A list of statements in the block.
        self.statements = statements

        # The start times of various statements.
        self.times = [ ]
        
        for i, s in enumerate(statements):
            if isinstance(s, Time):
                self.times.append((s.time, i + 1))

        self.times.sort()
        
    def execute(self, trans, st, state, event):

        executing(self.loc)
        
        # Unpack the state.
        if state is not None:
            index, start, loop_start, repeats, times, child_state = state
        else:
            index, start, loop_start, repeats, times, child_state = 0, 0, 0, 0, self.times[:], None

        # What we might be returning.
        action = "continue"
        arg = None
        pause = None
        
        while action == "continue":

            # Target is the time we're willing to execute to.
            # Max_pause is how long we'll wait before executing again.

            # If we have times queued up, then use them to inform target
            # and time.
            if times:
                time, tindex = times[0]
                target = min(time, st)
                max_pause = time - target

            # Otherwise, take the defaults.
            else:
                target = st
                max_pause = 15

            while True:

                # If we've hit the last statement, it's the end of
                # this block.
                if index >= len(self.statements):
                    return "next", target - start, None


               # Find the statement and try to run it.
                stmt = self.statements[index]
                action, arg, pause = stmt.execute(trans, target - start, child_state, event)

                # On continue, persist our state.
                if action == "continue":
                    if pause is None:
                        pause = max_pause

                    action, arg, pause = "continue", (index, start, loop_start, repeats, times, arg), min(max_pause, pause)
                    break

                elif action == "event":
                    return action, arg, pause

                # On next, advance to the next statement in the block.
                elif action == "next":
                    index += 1
                    start = target - arg
                    child_state = None

                # On repeat, either terminate the block, or go to
                # the first statement.
                elif action == "repeat":

                    count, arg = arg
                    loop_end = target - arg
                    duration = loop_end - loop_start

                    # Figure how many durations can occur between the
                    # start of the loop and now.
                    new_repeats = int((target - loop_start) / duration)

                    if duration <= 0:
                        raise Exception("ATL appears to be in an infinite loop.")

                    if count is not None:
                        if repeats + new_repeats >= count:
                            new_repeats = count - repeats
                            loop_start += new_repeats * duration
                            return "next", target - loop_start, None

                    repeats += new_repeats
                    loop_start = loop_start + new_repeats * duration
                    start = loop_start
                    index = 0
                    child_state = None

            if times:
                time, tindex = times[0]
                if time <= target:
                    times.pop(0)
                    
                    index = tindex
                    start = time
                    child_state = None

                    continue

            return action, arg, pause

    def visit(self):
        return [ j for i in self.statements for j in i.visit() ]
            
# This can become one of four things:
#
# - A pause.
# - An interpolation (which optionally can also reference other
# blocks, as long as they're not time-dependent, and have the same
# arity as the interpolation).
# - A call to another block.
# - A command to change the image, perhaps with a transition.
#
# We won't decide which it is until runtime, as we need the
# values of the variables here.
class RawMultipurpose(RawStatement):

    warp_function = None
    
    def __init__(self, loc):

        super(RawMultipurpose, self).__init__(loc)
        
        self.warper = None
        self.duration = None
        self.properties = [ ]
        self.expressions = [ ]
        self.splines = [ ]
        self.revolution = None
        self.circles = "0"
        
    def add_warper(self, name, duration, warp_function):
        self.warper = name
        self.duration = duration
        self.warp_function = warp_function
        
    def add_property(self, name, exprs):
        self.properties.append((name, exprs))

    def add_expression(self, expr, with_clause):
        self.expressions.append((expr, with_clause))

    def add_revolution(self, revolution):
        self.revolution = revolution
        
    def add_circles(self, circles):
        self.circles = circles

    def add_spline(self, name, exprs):
        self.splines.append((name, exprs))
        
    def compile(self, ctx):

        compiling(self.loc)
        
        # Figure out what kind of statement we have. If there's no
        # interpolator, and no properties, than we have either a
        # call, or a child statement.
        if (self.warper is None and
            self.warp_function is None and
            not self.properties and
            not self.splines and
            len(self.expressions) == 1):

            expr, withexpr = self.expressions[0]

            child = ctx.eval(expr)
            if withexpr:
                transition = ctx.eval(withexpr)
            else:
                transition = None

            if isinstance(child, (int, float)):
                return Interpolation(self.loc, "pause", child, [ ], None, 0, [ ])
                
            if isinstance(child, ATLTransformBase):
                child.compile()
                return child.block

            else:
                return Child(self.loc, child, transition)

        compiling(self.loc)

        # Otherwise, we probably have an interpolation statement.

        if self.warp_function:
            warper = ctx.eval(self.warp_function)
        else:            
            warper = self.warper or "pause"

            if warper not in warpers:
                raise Exception("ATL Warper %s is unknown at runtime." % warper)

        properties = [ ]

        for name, expr in self.properties:
            if name not in PROPERTIES:
                raise Exception("ATL Property %s is unknown at runtime." % property)

            value = ctx.eval(expr)
            properties.append((name, value))

        splines = [ ]
            
        for name, exprs in self.splines:
            if name not in PROPERTIES:
                raise Exception("ATL Property %s is unknown at runtime." % property)

            values = [ ctx.eval(i) for i in exprs ]

            splines.append((name, values))
            
        for expr, with_ in self.expressions:
            try:
                value = ctx.eval(expr)
            except:
                raise Exception("Could not evaluate expression %r when compiling ATL." % expr)

            if not isinstance(value, ATLTransformBase):
                raise Exception("Expression %r is not an ATL transform, and so cannot be included in an ATL interpolation." % expr)

            value.compile()

            if value.properties is None:
                raise Exception("ATL transform %r is too complicated to be included in interpolation." % expr)


            properties.extend(value.properties)

        duration = ctx.eval(self.duration)
        circles = ctx.eval(self.circles)

        return Interpolation(self.loc, warper, duration, properties, self.revolution, circles, splines)
            
    def predict(self, ctx, callback):

        for i, j in self.expressions:
            
            try:
                i = ctx.eval(i)
            except:
                continue

            if isinstance(i, ATLTransformBase):
                i.atl.predict(ctx, callback)
                return

            try:
                i = renpy.easy.displayable(i)
            except:
                continue

            if isinstance(i, renpy.display.core.Displayable):
                i.predict(callback)

# This lets us have an ATL transform as our child.
class RawContainsExpr(RawStatement):

    def __init__(self, loc, expr):

        super(RawContainsExpr, self).__init__(loc)

        self.expression = expr

    def compile(self, ctx):
        compiling(self.loc)
        child = ctx.eval(self.expression)
        return Child(self.loc, child, None)


# This allows us to have multiple children, inside a Fixed.
class RawChild(RawStatement):

    def __init__(self, loc, child):

        super(RawChild, self).__init__(loc)

        self.children = [ child ]

    def compile(self, ctx):
        box = renpy.display.layout.MultiBox(layout='fixed')

        for i in self.children:
            box.add(renpy.display.motion.ATLTransform(i, context=ctx.context))

        return Child(self.loc, box, None)

    
# This changes the child of this statement, optionally with a transition.
class Child(Statement):

    def __init__(self, loc, child, transition):

        super(Child, self).__init__(loc)
        
        self.child = renpy.easy.displayable(child)
        self.transition = transition

    def execute(self, trans, st, state, event):

        executing(self.loc)
        
        old_child = trans.raw_child

        if old_child is not None and self.transition is not None:
            child = self.transition(old_widget=old_child,
                                          new_widget=self.child)
        else:
            child = self.child

        trans.set_child(child)
        trans.raw_child = self.child

        return "next", st, None

    def visit(self):
        return [ self.child ]
    
        
# This causes interpolation to occur.
class Interpolation(Statement):

    def __init__(self, loc, warper, duration, properties, revolution, circles, splines):

        super(Interpolation, self).__init__(loc)

        self.warper = warper
        self.duration = duration
        self.properties = properties
        self.splines = splines
        
        # The direction we revolve in: cw, ccw, or None.
        self.revolution = revolution

        # The number of complete circles we make.
        self.circles = circles
        
    def execute(self, trans, st, state, event):

        executing(self.loc)
        
        warper = warpers.get(self.warper, self.warper)
        
        if self.duration:
            complete = min(1.0, st / self.duration)
        else:
            complete = 1.0

        complete = warper(complete)

        if state is None:

            # Create a new transform state, and apply the property
            # changes to it.
            newts = renpy.display.motion.TransformState()
            newts.take_state(trans.state)

            for k, v in self.properties:
                setattr(newts, k, v)

            # Now, the things we change linearly are in the difference
            # between the new and old states.
            linear = trans.state.diff(newts)

            revolution = None
            splines = [ ]
            
            # Clockwise revolution.
            if self.revolution is not None:

                # Remove various irrelevant motions.
                for i in [ 'xpos', 'ypos',
                           'xanchor', 'yanchor',
                           'xaround', 'yaround',
                           'xanchoraround', 'yanchoraround',
                           ]:

                    linear.pop(i, None)

                if newts.xaround is not None:

                    # Ensure we rotate around the new point.
                    trans.state.xaround = newts.xaround
                    trans.state.yaround = newts.yaround
                    trans.state.xanchoraround = newts.xanchoraround
                    trans.state.yanchoraround = newts.yanchoraround

                    # Get the start and end angles and radii.
                    startangle = trans.state.angle
                    endangle = newts.angle
                    startradius = trans.state.radius
                    endradius = newts.radius

                    # Make sure the revolution is in the appropriate direction,
                    # and contains an appropriate number of circles.

                    if self.revolution == "clockwise":
                        if endangle < startangle:
                            startangle -= 360

                        startangle -= self.circles * 360

                    elif self.revolution == "counterclockwise":
                        if endangle > startangle:
                            startangle += 360

                        startangle += self.circles * 360
                        
                    # Store the revolution.
                    revolution = (startangle, endangle, startradius, endradius)

            # Figure out the splines.
            for name, values in self.splines:
                splines.append((name, [ getattr(trans.state, name) ] + values))
                    
            state = (linear, revolution, splines)

        else:
            linear, revolution, splines = state
            
        # Linearly interpolate between the things in linear.
        for k, (old, new) in linear.items():
            value = interpolate(complete, old, new, PROPERTIES[k])
            setattr(trans.state, k, value)            
            
        # Handle the revolution.
        if revolution is not None:
            startangle, endangle, startradius, endradius = revolution
            trans.state.angle = interpolate(complete, startangle, endangle, float)
            trans.state.radius = interpolate(complete, startradius, endradius, float)

        # Handle any splines we might have.
        for name, values in splines:
            value = interpolate_spline(complete, values)
            setattr(trans.state, name, value)
            
        if st >= self.duration:
            return "next", st - self.duration, None
        else:
            if not self.properties and not self.revolution and not self.splines:
                return "continue", state, self.duration - st
            else:            
                return "continue", state, 0


# Implementation of the repeat statement.
class RawRepeat(RawStatement):

    def __init__(self, loc, repeats):

        super(RawRepeat, self).__init__(loc)

        self.repeats = repeats

    def compile(self, ctx):

        compiling(self.loc)

        repeats = self.repeats

        if repeats is not None:
            repeats = ctx.eval(repeats)
            
        return Repeat(self.loc, repeats)

class Repeat(Statement):

    def __init__(self, loc, repeats):

        super(Repeat, self).__init__(loc)

        self.repeats = repeats

    def execute(self, trans, st, state, event):
        return "repeat", (self.repeats, st), 0


# Parallel statement.

class RawParallel(RawStatement):

    def __init__(self, loc, block):

        super(RawParallel, self).__init__(loc)
        self.blocks = [ block ]

    def compile(self, ctx):
        return Parallel(self.loc, [i.compile(ctx) for i in self.blocks])

    def predict(self, ctx, callback):
        for i in self.blocks:
            i.predict(ctx, callback)
    
        
class Parallel(Statement):
    
    def __init__(self, loc, blocks):
        super(Parallel, self).__init__(loc)
        self.blocks = blocks

    def execute(self, trans, st, state, event):

        executing(self.loc)
        
        if state is None:
            state = [ (i, None) for i in self.blocks ]

        # The amount of time left after finishing this block.
        left = [ ]

        # The duration of the pause.
        pauses = [ ]

        # The new state structure.
        newstate = [ ]
        
        for i, istate in state:
            
            action, arg, pause = i.execute(trans, st, istate, event)

            if pause is not None:
                pauses.append(pause)

            if action == "continue":
                newstate.append((i, arg))
            elif action == "next":
                left.append(arg)
            elif action == "event":
                return action, arg, pause
                
        if newstate:
            return "continue", newstate, min(pauses)
        else:
            return "next", min(left), None

    def visit(self):
        return [ j for i in self.blocks for j in i.visit() ]


# The choice statement.

class RawChoice(RawStatement):

    def __init__(self, loc, chance, block):
        super(RawChoice, self).__init__(loc)

        self.choices = [ (chance, block) ]

    def compile(self, ctx):
        compiling(self.loc)
        return Choice(self.loc, [ (ctx.eval(chance), block.compile(ctx)) for chance, block in self.choices])

    def predict(self, ctx, callback):
        for i, j in self.choices:
            j.predict(ctx, callback)

class Choice(Statement):

    def __init__(self, loc, choices):

        super(Choice, self).__init__(loc)

        self.choices = choices

    def execute(self, trans, st, state, event):

        executing(self.loc)
        
        if state is None:

            total = 0
            for chance, choice in self.choices:
                total += chance

            n = random.uniform(0, total)

            for chance, choice in self.choices:
                if n < chance:
                    break
                n -= chance

            cstate = None

        else:
            choice, cstate = state

        action, arg, pause = choice.execute(trans, st, cstate, event)

        if action == "continue":
            return "continue", (choice, arg), pause
        else:
            return action, arg, None

    def visit(self):
        return [ j for i in self.choices for j in i[1].visit() ]

        
# The Time statement.

class RawTime(RawStatement):

    def __init__(self, loc, time):

        super(RawTime, self).__init__(loc)
        self.time = time

    def compile(self, ctx):
        compiling(self.loc)
        return Time(self.loc, ctx.eval(self.time))

class Time(Statement):

    def __init__(self, loc, time):
        super(Time, self).__init__(loc)

        self.time = time

    def execute(self, trans, st, state, event):
        return "continue", None, None
        

# The On statement.

class RawOn(RawStatement):

    def __init__(self, loc, name, block):
        super(RawOn, self).__init__(loc)

        self.handlers = { name : block }

    def compile(self, ctx):

        compiling(self.loc)

        handlers = { }

        for k, v in self.handlers.items():
            handlers[k] = v.compile(ctx)

        return On(self.loc, handlers)

    def predict(self, ctx, callback):
        for i in self.handlers.values():
            i.predict(ctx, callback)

class On(Statement):

    def __init__(self, loc, handlers):
        super(On, self).__init__(loc)

        self.handlers = handlers
    
    def execute(self, trans, st, state, event):

        executing(self.loc)

        # If it's our first time through, start in the start state.
        if state is None:
            name, start, cstate = ("start", st, None)
        else:
            name, start, cstate = state


        # If we have an external event, and we have a handler for it,
        # handle it.
        if event in self.handlers:

            # Do not allow people to abort the hide handler with another
            # event.
            if name != "hide":
                name = event
                start = st
                cstate = None
                
        while True:

            # If we don't have a handler, return until we change event.
            if name not in self.handlers:
                return "continue", (name, start, cstate), None
            
            action, arg, pause = self.handlers[name].execute(trans, st - start, cstate, event)

            # If we get a continue, save our state.
            if action == "continue":

                # If it comes from a hide block, indicate that.
                if name == "hide":
                    trans.hide_response = False

                return "continue", (name, start, arg), pause

            # If we get a next, then try going to the default
            # event, unless we're already in default, in which case we
            # go to None.
            elif action == "next":
                if name == "default" or name == "hide":
                    name = None
                else:
                    name = "default"

                start = st - arg
                cstate = None

                continue

            # If we get an event, then either handle it if we can, or
            # pass it up the stack if we can't.
            elif action == "event":

                name, arg = arg

                if name in self.handlers:
                    start = max(st - arg, st - 30)
                    cstate = None
                    continue

                return "event", (name, arg), None

    def visit(self):
        return [ j for i in self.handlers.values() for j in i.visit() ]


# Event statement.
            
class RawEvent(RawStatement):

    def __init__(self, loc, name):
        super(RawEvent, self).__init__(loc)

        self.name = name

    def compile(self, ctx):
        return Event(self.loc, self.name)

    
class Event(Statement):

    def __init__(self, loc, name):
        super(Event, self).__init__(loc)

        self.name = name

    def execute(self, trans, st, state, event):
        return "event", (self.name, st), None
    

class RawFunction(RawStatement):

    def __init__(self, loc, expr):
        super(RawFunction, self).__init__(loc)

        self.expr = expr

    def compile(self, ctx):
        compiling(self.loc)
        return Function(self.loc, ctx.eval(self.expr))

class Function(Statement):
    
    def __init__(self, loc, function):
        super(Function, self).__init__(loc)

        self.function = function

    def execute(self, trans, st, state, event):
        fr = self.function(trans, st, trans.at)
        
        if fr is not None:
            return "continue", None, fr
        else:
            return "next", 0, None

        
    
    
# This parses an ATL block.
def parse_atl(l):

    l.advance()
    block_loc = l.get_location()

    statements = [ ]

    animation = False
    
    while not l.eob:

        loc = l.get_location()
        
        if l.keyword('repeat'):

            repeats = l.simple_expression()
            statements.append(RawRepeat(loc, repeats))

        elif l.keyword('block'):
            l.require(':')
            l.expect_eol()
            l.expect_block('block')

            block = parse_atl(l.subblock_lexer())            
            statements.append(block)

        elif l.keyword('contains'):

            expr = l.simple_expression()

            if expr:

                l.expect_noblock('contains expression')
                statements.append(RawContainsExpr(loc, expr))

            else:

                l.require(':')
                l.expect_eol()
                l.expect_block('contains')

                block = parse_atl(l.subblock_lexer())            
                statements.append(RawChild(loc, block))

        elif l.keyword('parallel'):
            l.require(':')
            l.expect_eol()
            l.expect_block('parallel')
            
            block = parse_atl(l.subblock_lexer())
            statements.append(RawParallel(loc, block))

        elif l.keyword('choice'):

            chance = l.simple_expression()
            if not chance:
                chance = "1.0"

            l.require(':')
            l.expect_eol()
            l.expect_block('choice')
            
            block = parse_atl(l.subblock_lexer())
            statements.append(RawChoice(loc, chance, block))

        elif l.keyword('on'):

            name = l.require(l.word)

            l.require(':')
            l.expect_eol()
            l.expect_block('on')
            
            block = parse_atl(l.subblock_lexer())
            statements.append(RawOn(loc, name, block))

        elif l.keyword('time'):
            time = l.require(l.simple_expression)
            l.expect_noblock('time')

            statements.append(RawTime(loc, time))

        elif l.keyword('function'):
            expr = l.require(l.simple_expression)
            l.expect_noblock('function')

            statements.append(RawFunction(loc, expr))

        elif l.keyword('event'):
            name = l.require(l.word)
            l.expect_noblock('event')

            statements.append(RawEvent(loc, name))

        elif l.keyword('pass'):
            l.expect_noblock('pass')
            statements.append(None)

        elif l.keyword('animation'):
            l.expect_noblock('animation')
            animation = True
            
        else:

            # If we can't assign it it a statement more specifically,
            # we try to parse it into a RawMultipurpose. That will
            # then be turned into another statement, as appropriate.
            
            # The RawMultipurpose we add things to.
            rm = renpy.atl.RawMultipurpose(loc)

            # Is the last clause an expression?
            last_expression = False

            # Is this clause an expression?
            this_expression = False
            
            # First, look for a warper.
            cp = l.checkpoint()
            warper = l.name()

            
            if warper in warpers:
                duration = l.require(l.simple_expression)
                warp_function = None

            elif warper == "warp":
                
                warper = None
                warp_function = l.require(l.simple_expression)
                duration = l.require(l.simple_expression)
                
            else:
                l.revert(cp)

                warper = None
                warp_function = None
                duration = "0"
                
            rm.add_warper(warper, duration, warp_function)

            # Now, look for properties and simple_expressions.
            while True:

                # Update expression status.
                last_expression = this_expression
                this_expression = False

                if l.keyword('pass'):
                    continue
                
                # Parse revolution keywords.
                if l.keyword('clockwise'):
                    rm.add_revolution('clockwise')
                    continue

                if l.keyword('counterclockwise'):
                    rm.add_revolution('counterclockwise')
                    continue

                if l.keyword('circles'):
                    expr = l.require(l.simple_expression)
                    rm.add_circles(expr)

                # Try to parse a property. 
                cp = l.checkpoint()
                
                prop = l.name()

                if prop in PROPERTIES:

                    expr = l.require(l.simple_expression)

                    # We either have a property or a spline. It's the
                    # presence of knots that determine which one it is.

                    knots = [ ]
                    
                    while l.keyword('knot'):
                        knots.append(l.require(l.simple_expression))

                    if knots:
                        knots.append(expr)
                        rm.add_spline(prop, knots)
                    else:
                        rm.add_property(prop, expr)

                    continue
                    
                # Otherwise, try to parse it as a simple expressoon,
                # with an optional with clause.

                l.revert(cp)

                expr = l.simple_expression()

                if not expr:
                    break

                if last_expression:
                    l.error('ATL statement contains two expressions in a row; is one of them a misspelled property? If not, separate them with pass.')

                this_expression = True
                    
                if l.keyword("with"):
                    with_expr = l.require(l.simple_expression)
                else:
                    with_expr = None

                rm.add_expression(expr, with_expr)

            l.expect_noblock('ATL')
                
            statements.append(rm)
            
            
        if l.eol():
            l.advance()
            continue

        l.require(",", "comma or end of line")

        
    # Merge together statements that need to be merged together.

    merged = [ ]
    old = None

    for new in statements:

        if isinstance(old, RawParallel) and isinstance(new, RawParallel):
            old.blocks.extend(new.blocks)
            continue

        elif isinstance(old, RawChoice) and isinstance(new, RawChoice):
            old.choices.extend(new.choices)
            continue

        elif isinstance(old, RawChild) and isinstance(new, RawChild):
            old.children.extend(new.children)
            continue

        elif isinstance(old, RawOn) and isinstance(new, RawOn):
            old.handlers.update(new.handlers)
            continue

        # None is a pause statement, which gets skipped, but also
        # prevents things from combining.
        elif new is None:
            old = new
            continue
        
        merged.append(new)
        old = new

    return RawBlock(block_loc, merged, animation)